
Advanced Computer Programming
[Lecture 06]

Saeed Reza Kheradpisheh

kheradpisheh@ut.ac.ir

Department of Computer Science
Shahid Beheshti University

1



ARRAYS and ARRAY LISTS

In many programs, you need to collect large numbers of values. In
Java, you use the array and array list constructs for this purpose.
Arrays have a more concise syntax, whereas array lists can
automatically grow to any desired size.

2



Declaring Arrays

Definition
An array is a sequence of values of the same type.

Declaring an array variable of a specific type:
type[] name;
e.g. double[] values;
Declaring an array variable is not enough and you should initialize it:
type[] name = new type[length];
e.g. Initialize an array variable of type double with 10 double
variables each has the value of zero:
double[] values = new double[10];
When you declare an array, you can specify the initial values:
double[] values = { 32, 54, 67.5, 29, 35, 80};

3



Declaring Arrays

Definition
An array is a sequence of values of the same type.

Declaring an array variable of a specific type:
type[] name;
e.g. double[] values;

Declaring an array variable is not enough and you should initialize it:
type[] name = new type[length];
e.g. Initialize an array variable of type double with 10 double
variables each has the value of zero:
double[] values = new double[10];
When you declare an array, you can specify the initial values:
double[] values = { 32, 54, 67.5, 29, 35, 80};

3



Declaring Arrays

Definition
An array is a sequence of values of the same type.

Declaring an array variable of a specific type:
type[] name;
e.g. double[] values;
Declaring an array variable is not enough and you should initialize it:
type[] name = new type[length];
e.g. Initialize an array variable of type double with 10 double
variables each has the value of zero:
double[] values = new double[10];

When you declare an array, you can specify the initial values:
double[] values = { 32, 54, 67.5, 29, 35, 80};

3



Declaring Arrays

Definition
An array is a sequence of values of the same type.

Declaring an array variable of a specific type:
type[] name;
e.g. double[] values;
Declaring an array variable is not enough and you should initialize it:
type[] name = new type[length];
e.g. Initialize an array variable of type double with 10 double
variables each has the value of zero:
double[] values = new double[10];
When you declare an array, you can specify the initial values:
double[] values = { 32, 54, 67.5, 29, 35, 80};

3



Accessing Array Elements

Individual elements in an array are accessed by an integer index
i, using the notation array[i].

An array element can be used like any variable.

double[] values = new double[10];
values[4] = 35;

Note that indices starts from 0 to values.length - 1

4



Array Examples

5



Array References

Definition
The reference denotes the location of the array in memory.

The array variable does not store any elements. Instead, the array
elements are stored elsewhere in the memory and the array variable
holds a reference to that location.

6



Array References

Definition
The reference denotes the location of the array in memory.

The array variable does not store any elements. Instead, the array
elements are stored elsewhere in the memory and the array variable
holds a reference to that location.

6



Array References
Consider the following code:
int[] scores = { 10, 9, 7, 4, 5 };
int[] values = scores;

When you copy an array variable into another, both variables refer to
the same array, because you copy the reference not the elements!

You can modify the array through either of the variables:
scores[3] = 10;
System.out.println(values[3]); // Prints 10

7



Array References
Consider the following code:
int[] scores = { 10, 9, 7, 4, 5 };
int[] values = scores;

When you copy an array variable into another, both variables refer to
the same array, because you copy the reference not the elements!

You can modify the array through either of the variables:
scores[3] = 10;
System.out.println(values[3]); // Prints 10

7



Array Common Errors

Bounds Errors
Perhaps the most common error in using arrays is accessing a
nonexistent element.
double[] values = new double[10];
values[10] = 5.4; // Error!

Uninitialized Arrays
A common error is to allocate an array variable, but not an actual
array.
double[] values;
values[0] = 29.95; // Error-values not initialized

8



Array Common Errors

Bounds Errors
Perhaps the most common error in using arrays is accessing a
nonexistent element.
double[] values = new double[10];
values[10] = 5.4; // Error!

Uninitialized Arrays
A common error is to allocate an array variable, but not an actual
array.
double[] values;
values[0] = 29.95; // Error-values not initialized

8



The Enhanced for Loop

Usage
You can use the enhanced for loop to visit (read) all elements of an
array.

9



Common Array Algorithms

Filling

Sum and Average Value

Maximum and Minimum

Linear Search

Removing an Element

Inserting an Element

Swapping Elements

Copying Arrays

Reading Input

10



Removing an Element

11



Inserting an Element

12



Swapping Two Elements

13



Copying Arrays
If you want to make a true copy of an array, call the Arrays.copyOf
method. The call Arrays.copyOf(values, n) allocates an array of
length n, copies the first n elements of values (or the entire values
array if n > values.length) into it, and returns the new array.
double[] prices = Arrays.copyOf(values, values.length);

import java.util.Arrays; 14



Using Arrays with Methods

What would be the output of the following code?

public static double sum(double[] values)
{

for(int i = 1; i < values.length; i++)
values[i] = values[i] + values[i - 1];

return values[values.length - 1];
}
public static void main(String[] args)
{

double[] data = {10, 20, 30};
System.out.println(sum(data));
System.out.println(data[2]);

}
Note that the copy of the array reference is passed instead of the copy
of the array elements.

15



Using Arrays with Methods
What would be the output of the following code?

public static double sum(double[] values)
{

for(int i = 1; i < values.length; i++)
values[i] = values[i] + values[i - 1];

return values[values.length - 1];
}
public static void main(String[] args)
{

double[] data = {10, 20, 30};
System.out.println(sum(data));
System.out.println(data[2]);

}

Note that the copy of the array reference is passed instead of the copy
of the array elements.

15



Using Arrays with Methods
What would be the output of the following code?

public static double sum(double[] values)
{

for(int i = 1; i < values.length; i++)
values[i] = values[i] + values[i - 1];

return values[values.length - 1];
}
public static void main(String[] args)
{

double[] data = {10, 20, 30};
System.out.println(sum(data));
System.out.println(data[2]);

}
Note that the copy of the array reference is passed instead of the copy
of the array elements.

15



Exercise (EvenSum.java)
Write a method that takes an integer array as input and returns the
sum of elements at even positions.

Exercise (RevArray.java)
Write a method that takes an integer array as input and returns a new
array which is filled with the input elements in reverse order.

Exercise (Login.java)
Write a program that simulates a login system which takes a
username and a password, checks for a match, and prompt the user
with success or failure.

16



Exercise (EvenSum.java)
Write a method that takes an integer array as input and returns the
sum of elements at even positions.

Exercise (RevArray.java)
Write a method that takes an integer array as input and returns a new
array which is filled with the input elements in reverse order.

Exercise (Login.java)
Write a program that simulates a login system which takes a
username and a password, checks for a match, and prompt the user
with success or failure.

16



Exercise (EvenSum.java)
Write a method that takes an integer array as input and returns the
sum of elements at even positions.

Exercise (RevArray.java)
Write a method that takes an integer array as input and returns a new
array which is filled with the input elements in reverse order.

Exercise (Login.java)
Write a program that simulates a login system which takes a
username and a password, checks for a match, and prompt the user
with success or failure.

16



Two-Dimensional Arrays
Definition
An arrangement consisting of rows and columns of values is called a
two-dimensional array, or a matrix.

Individual elements in a two-dimensional array are accessed by using
two index values, array[i][j].

17



Two-Dimensional Arrays

Two-dimensional arrays are in fact arrays of arrays!

You can create rows of either the same size or different sizes

double[][] a = new double[5][3];
Creates 5 rows each has the length of 3;

double[][] b = new double[3][];
Create 5 rows which are uninitialized!
So you can initialize each of them with an arbitrary size:

for(int i = 0; i < b.length; i++)
b[i] = new double[i + 1];

Note that b[i] is a reference to a one-dimensional array of type
double.

18



Two-Dimensional Arrays

Two-dimensional arrays are in fact arrays of arrays!
You can create rows of either the same size or different sizes

double[][] a = new double[5][3];
Creates 5 rows each has the length of 3;

double[][] b = new double[3][];
Create 5 rows which are uninitialized!
So you can initialize each of them with an arbitrary size:

for(int i = 0; i < b.length; i++)
b[i] = new double[i + 1];

Note that b[i] is a reference to a one-dimensional array of type
double.

18



Two-Dimensional Arrays

Two-dimensional arrays are in fact arrays of arrays!
You can create rows of either the same size or different sizes

double[][] a = new double[5][3];
Creates 5 rows each has the length of 3;

double[][] b = new double[3][];
Create 5 rows which are uninitialized!
So you can initialize each of them with an arbitrary size:

for(int i = 0; i < b.length; i++)
b[i] = new double[i + 1];

Note that b[i] is a reference to a one-dimensional array of type
double.

18



Two-Dimensional Arrays

19



Multidimensional Arrays

Can you guess?

type[] name = new type[size];
type[][] name = new type[size][];
type[][][] name = new type[size][][];
type[][][][] name = new type[size][][][];
type[][][][][] name = new type[size][][][][];
.
.
.

20



Multidimensional Arrays

Can you guess?

type[] name = new type[size];
type[][] name = new type[size][];
type[][][] name = new type[size][][];
type[][][][] name = new type[size][][][];
type[][][][][] name = new type[size][][][][];
.
.
.

20



Exercise (MatrixProduct.java)
Write a method that takes two 2-D integer matrices a and b as inputs
and returns a×b.

Exercise (FallDown.java)
Write a program that takes a map m and find the path that enters from
the top and exits from the bottom.
Input maps have r rows (r is an odd integer) and c columns. Even
rows of the map (starting from zero) are blocked with tiles. In each row
of blocks, there is exactly one hole through which you can pass down.

21



Exercise (MatrixProduct.java)
Write a method that takes two 2-D integer matrices a and b as inputs
and returns a×b.

Exercise (FallDown.java)
Write a program that takes a map m and find the path that enters from
the top and exits from the bottom.
Input maps have r rows (r is an odd integer) and c columns. Even
rows of the map (starting from zero) are blocked with tiles. In each row
of blocks, there is exactly one hole through which you can pass down.

21



Array Lists
Definition
An array list is a container which stores a sequence of values and its
size can change (arrays have a fixed size).

import java.util.ArrayList;

22



Array Lists
Definition
An array list is a container which stores a sequence of values and its
size can change (arrays have a fixed size).

import java.util.ArrayList;

22



Array Lists

The type ArrayList<Type> denotes an array list of Type
elements (type parameter).

You cannot use primitive types as type parameters.

Array lists must be initialized:
ArrayList<Type> name = new ArrayList<Type>();

An array list variable stores a reference to the actual location of
elements.

When the ArrayList<Type> is first constructed, it has size 0.

You can add elements to the end of an array list by use of the add
method.

23



Array Lists

The type ArrayList<Type> denotes an array list of Type
elements (type parameter).

You cannot use primitive types as type parameters.

Array lists must be initialized:
ArrayList<Type> name = new ArrayList<Type>();

An array list variable stores a reference to the actual location of
elements.

When the ArrayList<Type> is first constructed, it has size 0.

You can add elements to the end of an array list by use of the add
method.

23



Array Lists

The type ArrayList<Type> denotes an array list of Type
elements (type parameter).

You cannot use primitive types as type parameters.

Array lists must be initialized:
ArrayList<Type> name = new ArrayList<Type>();

An array list variable stores a reference to the actual location of
elements.

When the ArrayList<Type> is first constructed, it has size 0.

You can add elements to the end of an array list by use of the add
method.

23



Adding Elements to an Array List

ArrayList<String> names = new ArrayList<String>();
names.add("Emily");
names.add("Bob");
names.add("Cindy");

24



Working with Array Lists

25



Creating Array List of Primitive Types
Use the wrapper classes of each primitive type. Variables of wrapper
types store reference.
Double wrapper = 29.95;

26



Copying Array List

Reference Copy:
ArrayList<String> friends = names;
names.add("Harry");

True Copy:
ArrayList<String> newNames =
new ArrayList<String>(names);

27



Comparing Array and Array List Operations

28



length, lenght(), and size()

29



Exercise (ArrayToList.java)
Write a method that converts a 2-D array of strings into an array list of
array lists of strings!

Exercise (PrimeFactors.java)
Write a method that takes an integer and returns all of its prime factors.

Exercise (ExtractWords.java)
Write a method that takes a string and returns all of the words in that
string.

30



Exercise (ArrayToList.java)
Write a method that converts a 2-D array of strings into an array list of
array lists of strings!

Exercise (PrimeFactors.java)
Write a method that takes an integer and returns all of its prime factors.

Exercise (ExtractWords.java)
Write a method that takes a string and returns all of the words in that
string.

30



Exercise (ArrayToList.java)
Write a method that converts a 2-D array of strings into an array list of
array lists of strings!

Exercise (PrimeFactors.java)
Write a method that takes an integer and returns all of its prime factors.

Exercise (ExtractWords.java)
Write a method that takes a string and returns all of the words in that
string.

30


